Selamat datang di dunia menarik matematika, khususnya tentang Integral Tak Tentu Fungsi Aljabar, yang sering kali dianggap sebagai bagian yang menantang namun memuaskan dari kurikulum SMA kelas 11 untuk jurusan IPS. Dalam pelajaran ini, kalian akan belajar bagaimana menemukan antiturunan dari fungsi aljabar, atau dengan kata lain, mencari fungsi asal dari suatu turunan. Itu seru, kan? Proses ini tidak hanya mengasah kemampuan analisis kalian tetapi juga mempersiapkan kalian menghadapi berbagai aplikasi dalam kehidupan nyata dan bidang ilmu lainnya. Melalui materi ini, kami berharap kalian bisa memperluas pemahaman mengenai matematika lebih dalam lagi. Pastikan untuk mengunjungi bimbel.net/ untuk menemukan lebih banyak sumber belajar yang bermanfaat dan membantu kalian sukses dalam pelajaran ini.
Saat kita melangkah lebih jauh, tujuan utama pelajaran ini adalah agar kalian bisa memahami dan menerapkan dasar-dasar integral tak tentu dalam berbagai konteks. Kemahiran ini sangat berguna tidak hanya untuk menghadapi ujian tetapi juga dalam mengembangkan keterampilan berpikir kritis dan pemecahan masalah. Materi ini dirancang untuk membantu kalian memahami konsep-konsep tersebut dengan cara yang mudah dan menyenangkan. Jadi, siapkan dirimu untuk menggali ilmu dan temukan betapa ajaibnya matematika saat kalian dapat menyelesaikan masalah yang tampaknya sulit pada awalnya.
Latihan Soal
1) Tentukan hasil dari integral $\int 4x^3 dx$.
2) Hasil dari $\int(2x+5)dx$ adalah…
3) Tentukan hasil dari $\int(x^2−4x+3)dx$.
4) Hasil dari $\int(6x^2−8x+7)dx$ adalah…
5) Jika $f′(x)=3x^2−2x+1$, maka $f(x)$ adalah…
6) Hasil dari $\int(x+1)(x−2)dx$ adalah…
7) Tentukan hasil dari $\int(x^2+\frac{1}{x^2})dx$.
8) Hasil dari $\int(x\sqrt{x})dx$ adalah…
9) Tentukan hasil dari $\int(4x^3−\frac{1}{2}x^2+1)dx$.
10) Jika $f(x)=\int(10x^4+3)dx$ dan $f(1)=5$, maka $f(x)$ adalah…
11) Hasil dari $\int(2x^3−6x^2)dx$ adalah…
12) Tentukan hasil dari $\int(x−\frac{1}{x})^2dx$.
13) Hasil dari $\int\frac{x^2−1}{x}dx$ adalah…
14) Tentukan hasil dari $\int(x^2+2)(x−1)dx$.
15) Jika $f(x)=\int\sqrt{x}dx$, maka $f(x)$ adalah…
16) Tentukan hasil dari $\int(2x^2−3)^2dx$.
17) Hasil dari $\int(\sqrt{x}+1)^2dx$ adalah…
18) Tentukan hasil dari $\int\frac{x^3−8}{x−2}dx$.
19) Hasil dari $\int(3x^2−4x+\frac{1}{\sqrt{x}})dx$ adalah…
20) Jika $f(x)=\int\frac{x^2−4}{x−2}dx$, maka $f(x)$ adalah…
21) Tentukan hasil dari $\int(2x\sqrt{x}−\frac{1}{x^2})dx$.
22) Hasil dari $\int(x^2+1)(x−1)(x+1)dx$ adalah…
23) Jika $\int f(x)dx=x^3+2x^2+C$, maka $f(x)$ adalah…
24) Tentukan hasil dari $\int\frac{3}{\sqrt[3]{x}}dx$.
25) Hasil dari $\int(2x^2−5x+\frac{1}{x})dx$ adalah…
26) Tentukan hasil dari $\int\frac{x^4+2x^2}{x^2}dx$.
27) Hasil dari $\int(3x^2−\frac{2}{x^3})dx$ adalah…
28) Jika $f(x)$ adalah turunan dari $F(x)=\frac{1}{4}x^4−2x^2+5$, maka $\int f(x)dx$ adalah…
29) Tentukan hasil dari $\int\sqrt{x}(x−1)dx$.
30) Hasil dari $\int(2x+1)^2dx$ adalah…
31) Jika $F(x)=\int f(x)dx$ dan $F(x)=2x^3−x^2+5$, maka $f(x)$ adalah…
32) Hasil dari $\int(x^2−1)^2dx$ adalah…
33) Tentukan hasil dari $\int(2x+\frac{1}{x})^2dx$.
34) Hasil dari $\int(3\sqrt{x}−\frac{2}{\sqrt{x}})dx$ adalah…
35) Tentukan hasil dari $\int\frac{x^3−x}{x−1}dx$.
36) Jika $f′(x)=6x−4$ dan $f(2)=10$, maka $f(x)$ adalah…
37) Hasil dari $\int\frac{x^3+2x^2−3x}{x}dx$ adalah…
38) Tentukan hasil dari $\int(x^2−2x+\frac{1}{x})dx$.
39) Hasil dari $\int(\sqrt{x}−\frac{1}{\sqrt{x}})dx$ adalah…
40) Jika $f′′(x)=6x+2$, $f′(1)=5$, dan $f(1)=3$, maka $f(x)$ adalah…
Aplikasi Ujian Online
Bagaimana perasaan kalian setelah mencoba latihan soal terkait materi Integral Tak Tentu Fungsi Aljabar ini? Apakah soalnya cukup membantu, menantang, atau justru membuat konsepnya menjadi lebih mudah dipahami? Penting sekali untuk merefleksikan pengalaman belajar ini sehingga kalian bisa mengenali area mana yang perlu ditingkatkan dan merasa lebih percaya diri dalam menghadapi topik integral di masa mendatang. Jika dirasa tantangan ini bisa memotivasi kalian untuk belajar lebih giat, maka kalian berada di jalur yang tepat!
Mari lanjutkan perjalanan belajar kalian dengan mengeksplorasi lebih banyak latihan soal melalui platform Website Ujian Online. Platform ini sangat berguna untuk persiapan dalam menghadapi Asesmen Sumatif Tengah Semester (ASTS), Asesmen Sumatif Akhir Semester (ASAS), dan Penilaian Akhir Semester (PAS). Dengan fitur-fitur menyerupai ujian sebenarnya, seperti timer hitung mundur dan sistem penilaian otomatis, platform ini dirancang untuk membantu kalian dalam menilai performa belajar kalian dengan efektif. Siap menghadapi ujian dengan lebih percaya diri? Ayo manfaatkan semua sumber daya yang tersedia dan buktikan bahwa kalian bisa!